超越方程

超越方程的求解可以利用繪圖法及數值方法求解。若利用繪圖法,可以分別令等式二邊的式子等於另一變數(例如

y

{\displaystyle y}

),然後在二個圖繪製在一起,二個圖的交點即為超越方程的解。數值方法也是以此想法往下延伸,利用數學公式求得二個圖交點的位置。

若是數值很小,或是已知解在某一數值附近,也可以用泰勒級數的方式來用多項式近似超越函數,因此超越方程可用代數方程近似,再針對代數方程求解。用牛頓法也可以求超越方程的數值解。

有些特殊的函數可用來表示超越方程的解。例如複變函數朗伯W函数就可以表示一些超越方程的解。以下的超越方程

x

e

x

=

1

{\displaystyle xe^{x}=1}

其解為

W

(

1

)

{\displaystyle W(1)}

,近似值為

0.56714329

{\displaystyle 0.56714329\dots }

(歐米加常數)。